This is a wrapper function of MCMCsummary
that calculates summary statistics for each
parameter in a mobility.model
object. Summary statistics are calculated for all parameters across
each chain along with convergance diagnosics like the Gelman-Rubin convergence diagnostic and (Rhat) and samples
auto-correlation foreach parameter. If the model object contains deviance and penalty parameters, then Deviance Information
Criterion (DIC) is calculated and appended to the summary.
summary(object, probs, ac_lags, ...)
object | a |
---|---|
probs | numeric vector giving the quantiles to calculate for each parameter (default = |
ac_lags | numeric vector of lags over which to calculate autocorrelation of samples within chains (default = |
... | further arguments passed to or from other methods |
a dataframe with summary statistics
John Giles
#>#> Compiling model graph #> Resolving undeclared variables #> Allocating nodes #> Graph information: #> Observed stochastic nodes: 70 #> Unobserved stochastic nodes: 32 #> Total graph size: 417 #> #> Initializing model #> #> NOTE: Stopping adaptation #> #>summary(mod)#> mean sd Q2.5 Q97.5 Rhat n.eff AC5 #> gamma 1.816561e-01 6.120037e-04 1.803954e-01 1.827982e-01 1.00 1089 0.04 #> theta 1.541606e-05 6.110462e-08 1.530066e-05 1.553273e-05 1.00 1882 -0.02 #> DIC 4.931091e+04 1.863001e+00 4.930903e+04 4.931594e+04 1.02 1028 0.05 #> deviance 4.930703e+04 1.863001e+00 4.930515e+04 4.931206e+04 1.02 1028 0.05 #> pD 1.939190e+00 NA NA NA NA NA NA #> AC10 #> gamma 0.02 #> theta -0.01 #> DIC 0.01 #> deviance 0.01 #> pD NA